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Abstract
We consider a large class of canonical coupled nonlinear Schrödinger equations
invariant over the action of the U(1)-group. The most general nonlinearity is
taken into account through a matrix that, without loss of generality, can be
separated into the sum of a Hermitian matrix and an anti-Hermitian matrix.
The U(1)-symmetry implies the existence of a set of continuity equations for
the conserved densities, where the corresponding currents have, in general,
a nonlinear structure. For this class of coupled Schrödinger equations we
introduce a nonlinear gauge transformation which changes the nonlinear matrix
into another one, purely Hermitian. Consequently, the currents are transformed
in the standard bilinear form. Generalization to noncanonical systems is also
discussed. Some examples are presented to illustrate the applicability of the
method.

PACS numbers: 11.30.Na, 11.40.−q, 11.40.Dw

1. Introduction and notations

In recent years, an increasing interest has been shown in systems of coupled nonlinear
Schrödinger equations (CNSE), in particular after the invention of high-intensity lasers, which
allowed [1] the experimental test of the pioneering theoretical works on solitons propagation
in long-distance communications in optical fibres [2, 3]. In fact, single-mode optical fibres are
not really single-mode, since different possible polarizations exist. A rigorous study of optical
pulse propagation requires the use of CNSEs, in order to take into account the evolution of
different polarized fields. In 1974 Manakov [4] introduced a CNSE starting from the cubic
nonlinear Schrödinger equation (NSE), by considering the total field as a superposition of two,
left and right polarized fields. When ultrashort pulses are transmitted through optical fibres,
CNSEs with complex and derivative nonlinearities arise [5–10].
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CNSEs are also employed in the study of other phenomenologies in physics, such as, in
light propagation through a nonlinear birefringent medium, in nonrelativistic interactions in
multi-species particle systems, in spinor Bose–Einstein condensation or in the description of
micro-polar elastic solids [11–19].

Systems of CNSEs are more complicated to solve with respect to NSEs, and quite
generally, the fruitful integrability techniques, developed for NSEs, fail when applied to
systems of CNSEs. For this reason, it is of great interest to find methods able to reduce such
systems to other more suitable forms.

By denoting with Nk the number of ‘particles’ of the kth species, in a multi-species system,
many possible combinations of conserved multiplets can be realized. Two particular limiting
cases are:

(a) All the quantities Nk are separately conserved. Such a situation is typical in nonrelativistic
systems of multi-species interacting particles, where process of transmutation from a
species to another one is forbidden.

(b) Only the quantity Ntot = ∑
k Nk is conserved. Relevant examples are given in the study

of light propagation in optical fibres. Here, each species describes a polarization mode,
and only the total intensity of the field is conserved.

Recently, in [20, 21] the authors studied a wide class of U(1)-invariant NSEs, containing
a complex nonlinearity �. The current J , associated with the conserved density ρ = |ψ |2
is, in general, nonlinear. Through the introducion of a unitary nonlinear transformation the
complex nonlinearity � can be reduced in another one, which turns out to be purely real. As
a consequence, the transformed current J̃ assumes the standard bilinear form of the linear
Schrödinger theory.

The same nonlinear gauge transformation has been generalized in [22] to the case of NSEs
minimally coupled with an Abelian gauge field.

We recall that nonlinear transformations have been introduced previously in the literature
to study different families of NSEs [23, 24] and CNSEs [25]. In [26], the term ‘gauge
transformations of third kind’ was coined for the class of the unitary nonlinear transformations.
Differently from the gauge transformations of first kind which have constant generators
and those of the second kind which have generators depending on the space coordinate
and eventually on time, the gauge transformations of third kind have generators depending
functionally on the fields, often in a nonlinear manner.

On physical grounds they are named gauge transformations because, as stated by
Feynmann and Hibbs [27], in a non-relativistic quantum mechanics, all measurements of
observables are always accomplished through a measurement of position and time. Thus,
quantum theories, for which the corresponding wavefunctions give the same probability density
in space at all time, are in principle equivalent [26]. In particular, when the wavefunctions
ψ and φ are related to each other by a unitary transformation, as in the gauge transformations
which we are introducing, the two quantities |ψ |2 ≡ ρψ = ρφ ≡ |φ|2, representing the density
of probability of position for each time, are the same and, as a consequence, the fields ψ and
φ describe the same physical system.

It is important to observe that nonlinear gauge transformations permit us to classify the
Schrödinger equations in classes of equivalence. Any member belonging to the same class, in
spite of its nonlinearity, describes the same physical system.

The purpose of the present work is to generalize the method previously introduced in
[20–22] for the U(1)-invariant NSEs containing a complex nonlinearity to the case of U(1)-
invariant CNSEs containing a non-Hermitian nonlinearity. The U(1)-invariance implies the
existence of a set of continuity equations for the conserved densities ρk . The effect of the
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gauge transformation is to reduce this system of coupled equations to another one containing
only a Hermitian nonlinearity. As a consequence, all the nonlinear currents associated with
the continuity equations are reduced to the standard bilinear form. Preliminary results of the
topics discussed in the following can be found in [28].

We introduce a wide class of CNSEs (in suitable units)

i�t = −Â�xx + �̂[ρ,S]� + V̂ (x)�, (1.1)

where � = (ψ1, . . . , ψp), ρ ≡ (ρ1 . . . , ρp) and S ≡ (S1, . . . , Sp) are p-dimensional vectors1.
The components ψj of the vector � are related to the real scalar fields ρj and Sj , components
of the vectors ρ and S, through the polar decomposition [29, 30]

ψj = √
ρj exp

(
iSj

)
. (1.2)

Hereinafter we denote the operator-valued matrix M̂[v] by a hat (the lower case letter m[v]
denotes its entries) and use the notation between square brackets to indicate the functional
dependence on the components of the vector v = (v1, . . . , vp) and on its spatial derivatives of
any order. Without loss of generality we assume the p × p matrix Â in a diagonal form. The
potential V̂ (x) is a p × p diagonal matrix with real entries, describing the coupling between
the vector field � and an external force field.

We observe that any system of CNSEs can always be accommodated in the form given
in equation (1.1) with a diagonal nonlinearity �̂[ρ,S]. Such nonlinearity can be separated
in a Hermitian matrix Ŵ = (�̂ + �̂†)/2 and an anti-Hermitian matrix iŴ = (�̂ − �̂†)/2.
Thus, without lost of generality, we can assume �̂[ρ,S] = Ŵ [ρ,S] + iŴ[ρ,S], where the
diagonal matrices Ŵ [ρ,S] and Ŵ[ρ,S] have purely real entries. Such an assumption is only
for convenience and does not imply any restriction on the form of the nonlinearity. Finally,
we assume that all fields and their derivatives of any order vanish, at spatial infinity, in a
sufficiently rapid way (uniform boundary conditions).

In the following we assume that the multi-component system (1.1) has q conserved
multiplets of order pk , with k = 1, . . . , q and

∑
k pk = p, where 1 � q � p.

The two particular cases (a) and (b) discussed previously are recognized for q = p and
q = 1, respectively.

Let us organize the fields ψi , belonging to the vector �, in

� ≡(
ψ11, . . . , ψ1p1︸ ︷︷ ︸ ;ψ21, . . . , ψ2p2︸ ︷︷ ︸ ; . . . ;ψq1, . . . , ψqpq︸ ︷︷ ︸)

,

1st multiplet 2nd multiplet qth multiplet (1.3)

and, from now on, we relabel the fields ψi in ψkl where the first index k refers to the kth
multiplet of order pk , whereas the second index l, with 1 � l � pk , refers to the lth field inside
the multiplet k.

The conservation of the q multiplets implies that equation (1.1) admits a set of q continuity
equations

ρk,t + Jk,x = 0, (1.4)

with

ρk =
pk∑
l=1

|ψkl|2 . (1.5)

Equation (1.4) assures the conservation of the quantities

Nk =
∞∫

−∞
ρk dx, (1.6)

1 Throughout this paper we indicate the derivatives with respect to x and t in ψx ≡ ∂ψ/∂x and ψt ≡ ∂ψ/∂t .
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where the integral is evaluated on the full real interval (uniform boundary conditions guarantee
the convergence of the integral).

Once more we remark that, due to the non-Hermitian form of the nonlinearity �̂[ρ,S],
the currents Jk will have, in general, a nonlinear structure.

We introduce a nonlinear gauge transformation, � → �, where � ≡ (. . . , φkl, . . .)

is a p-dimensional vector with components φkl , which transforms the system of CNSEs into
another one, with a purely Hermitian nonlinearity. As a consequence, the transformed currents
J̃ k assume the standard bilinear form of the coupled linear Schrödinger theory

J̃ k = −i
pk∑
l=1

akl(φ
∗
klφkl,x − φ∗

kl,xφkl), (1.7)

where akl are the entries of the matrix Â of equation (1.1).
The plan of the work is the following. In the next section we introduce the system

under investigation whilst, in section 3, we study the restrictions imposed on the nonlinear
potential U [ρ,S] introduced in equation (2.1) by the set of continuity equations (1.4). The
nonlinear gauge transformation is introduced in section 4 which contains our main results
and, at the end of the same section, we present briefly the generalization of the method to the
noncanonical systems. In section 5, we illustrate the applicability of the method with some
explicit examples. Finally, section 6 is reserved for conclusions and discussions.

2. Coupled nonlinear Schrödinger equations

Let us consider a nonrelativistic canonical system described by the following Lagrangian
density:

L[�†, �] = i

2

(
�†�t − �

†
t �

) − �†
xÂ�x − U [ρ,S] − �†V̂ (x)�. (2.1)

Because the theory is nonrelativistic, the Lagrangian contains only first-order time derivatives.
The nonlinear potential U [ρ,S] is a smooth real functional depending on the vector fields
ρ,S and their spatial derivatives of any order. Accounting for the uniform boundary conditions
on the fields, the potential U [ρ,S] vanishes, together with all its derivatives, at spatial
infinity.

We introduce the action of the system

A =
∫
R
L[�†, �] dx dt, (2.2)

where the domain of integration is the whole real region R = R × R. The evolution equation
for the vector field � is given by the stationary trajectories of the action (2.2) and can be
obtained from the following variational problem,

δA = 0, (2.3)

where the variation in equation (2.3) is performed with respect to the 2p-dimensional vector
	 ≡ (�†, �).

From equation (2.3) we obtain

i�t = −Â�xx +
δ

δ�†

∫
R

U [ρ,S] dx dt + V̂ (x)�, (2.4)

and its Hermitian conjugate, which form a system of 2p nonlinear coupled Schröedinger
equations.
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Taking into account of the polar decomposition of the fields ψkl , in the real scalar fields
ρkl and Skl , given by

ψkl = √
ρkl exp (iSkl) , (2.5)

and their inverse formulae

ρkl = |ψkl|2, (2.6)

Skl = i

2
log

(
ψkl

∗

ψkl

)
, (2.7)

we can express the variation δ/δψ∗
kl as

δ

δψ∗
kl

= ψkl

(
δ

δρkl

+
i

2ρkl

δ

δSkl

)
. (2.8)

Then, each component of equation (2.4) can be written in

iψkl,t = −aklψkl,xx +
δ

δψ∗
kl

∫
U [ρ,S] dx dt + vkl(x)ψkl

= −aklψkl,xx +

(
δ

δρkl

+
i

2ρkl

δ

δSkl

) (∫
U [ρ,S] dx dt

)
ψkl + vkl(x)ψkl

= −aklψkl,xx +
δ

δρkl

(∫
U [ρ,S] dx dt

)
ψkl

+
i

2ρkl

δ

δSkl

(∫
U [ρ,S] dx dt

)
ψkl + vkl(x)ψkl, (2.9)

and can be posed in the following matrix form,

i�t = −Â�xx +
(
Ŵ [ρ,S] + iŴ[ρ,S]

)
� + V̂ (x)�, (2.10)

where

Ŵ [ρ,S] = diag

(
δ

δρkl

∫
U [ρ,S] dx dt

)
, (2.11)

Ŵ[ρ,S] = diag

(
1

2ρkl

δ

δSkl

∫
U [ρ,S] dx dt

)
. (2.12)

Finally, by using the polar decomposition (2.5), equation (2.10) can be separated in a system
of 2p nonlinear real coupled equations

ρkl,t + 2akl(ρklSkl,x)x − 2ρklWkl[ρ,S] = 0, (2.13)

Skl,t + akl(Skl,x)
2 − akl

(
√

ρkl)xx√
ρkl

+ wkl[ρ,S] + vkl(x) = 0. (2.14)

The first set of equations (2.13) describes the time evolution of the fields ρkl , whilst the
second set of equations (2.14) is a system of p-coupled Hamilton–Jacobi-like equations for the
fields Skl .
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3. U (1)-symmetry

In the following we consider only those systems written in the form (2.10) admitting the set
of q continuity equations (1.4). This imposes some restrictions on the functional dependence
of the potential U [ρ,S] with respect to the fields ρ and S that we derive in this section.

Let us begin by recalling the relation

δ

δSkl

= ∂

∂Skl

− ∂

∂x

δ

δSkl,x

, (3.1)

which follows directly from the definition of functional derivative [31]. By taking into account
the expression of the matrix Ŵ , given in equation (2.12), equation (2.13) can be written in

ρkl,t +

(
2aklρklSkl,x +

δ

δSkl,x

∫
U [ρ,S] dx dt

)
x

− ∂

∂Skl

∫
U [ρ,S] dx dt = 0. (3.2)

By summing on the index l, with 1 � l � pk , we obtain

ρk,t + (jk + Jk[ρ,S])x + Ik[ρ,S] = 0, (3.3)

where we have defined

ρk =
pk∑
l=1

ρkl, (3.4)

which is the total density of the kth multiplet and

jk =
pk∑
l=1

jkl, (3.5)

which is the total current of particle of the kth multiplet, with

jkl = 2aklρklSkl,x . (3.6)

In equation (3.3) we have posed

Jk[ρ,S] =
pk∑
l=1

Jkl[ρ,S], (3.7)

with

Jkl[ρ,S] = δ

δSkl,x

∫
U [ρ,S] dx dt, (3.8)

and

Ik[ρ,S] =
pk∑
l=1

Ikl[ρ,S], (3.9)

with

Ikl[ρ,S] = − ∂

∂Skl

∫
U [ρ,S] dx dt. (3.10)

Within these notations the matrix Ŵ assumes the expression

Ŵ[ρ,S] = diag

[
− 1

2ρkl

(
Ikl[ρ,S] + Jkl,x[ρ,S]

)]
. (3.11)

Because we are interested in U(1)-invariant systems conserving the quantities Nk , introduced
in equation (1.6), we require that equations (3.3) become a set of q continuity equations for
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the densities ρk . This implies that the functionals Ik[ρ,S] can be expressed as the derivatives
of a set of functionals Gk[ρ,S]:

Ik[ρ,S] = Gk,x[ρ,S], (3.12)

where the x-derivative of Gk[ρ,S] is given by

Gk,x[ρ,S] = δ

δρij

Gk[ρ,S]ρij,x +
δ

δSij

Gk[ρ,S]Sij,x, (3.13)

and a sum on the repeated indices i and j is assumed.
We remark that the expression of the functionals Gk[ρ,S] is determined univocally from

the nonlinear potential U [ρ,S] through equations (3.9), (3.10) and (3.12). Thus, conditions
(3.12) select the class of the Lagrangians (2.1) in which the method that we are introducing in
the next section can be performed.

If conditions (3.12) are accomplished, equations (3.3) form a system of q continuity
equations, like in (1.4), where the nonlinear currents Jk are given by

Jk = jk + Jk[ρ,S] + Gk[ρ,S]. (3.14)

It is worth noting that the evolution equations for the single densities ρkl actually are given by

ρkl,t + (jkl + Jkl[ρ,S])x + Ikl[ρ,S] = 0. (3.15)

The quantities Ikl are responsible for the non-conservation of the single components ρkl . They
take into account the transmutation of the component ρkl in the other components belonging
to the same multiplet k.

Let us now inquire on the conditions imposed on the nonlinear potential U [ρ,S] by
equations (3.12). We recall that, as follows from the Noether theorem, equations (1.4) are
a consequence of the invariance of the Lagrangian (2.1) with respect to a global unitary
transformation

� → � = Û�, (3.16)

with

Û = diag[exp(iε)], (3.17)

where

ε ≡
(
ε1, . . . , ε1︸ ︷︷ ︸ ;ε2, . . . , ε2︸ ︷︷ ︸ ; . . . ;εq, . . . , εq︸ ︷︷ ︸)

p1 times p2 times pq times (3.18)

are the constant parameters of the transformation.
Equation (3.16) shifts the phase S of the field � according to the relation S → Σ =

S + ε, where Σ is the phase of the transformed field �.
As is known, the Lagrangian (2.1) is invariant under the transformation (3.16) if the

nonlinear potential U [ρ,S] changes as

δU [ρ,S] = −
q∑

k=1

εkGk,x[ρ,S], (3.19)

where Gk[ρ,S] are arbitrary functionals. We recall that in this way the motion equation (2.4)
does not change because the Lagrangian density (2.1) is always defined modulo a total
derivative of an arbitrary functional (null Lagrangian). Accounting for the independence of
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the parameters εk , from equation (3.19) it follows that
pk∑
l=1

∂

∂Skl

∫
U [ρ,S] dx dt = −Gk,x[ρ,S], (3.20)

which coincides with equation (3.12).
In addition, because the parameters εk are constants, the potential U [ρ,S] can depend on

the phases Skl through their spatial derivatives of any order.
In particular, when p = q with pk = 1, for k = 1, . . . , p, the system conserves

separately each component ρk1 and, from equation (3.15), it follows that all the quantities
Ik1 must vanish. In this case the invariance of the Lagrangian under transformation (3.16)
requires that the potential U [ρ,S] depends only on the spatial derivatives of the fields Sk1, in
accordance with the results obtained in [22].

In this case, the matrix Ŵ assumes the more simple expression

Ŵ[ρ,S] = diag

(
−Jk1,x[ρ,S]

2ρk1

)
, (3.21)

where the functionals Jk1[ρ,S] are defined in equation (3.8), by posing pk = 1.

4. Gauge transformation of the third kind

Let us introduce the following nonlinear transformation,

�(x, t) → �(x, t) = Û[ρ,S]�(x, t), (4.1)

where Û is a diagonal and unitary matrix: Û † = Û−1.
The purpose of transformation (4.1) is to change the CNSE (2.10) into another one

containing only a purely Hermitian nonlinearity Ŵ ′ = (Ŵ ′)†.
As a consequence, the nonlinear currents Jk , given in equation (3.14), are transformed

into Jk → J̃ k where

J̃ k =
pk∑
l=1

j̃ kl , (4.2)

with

j̃ kl = 2aklρkl�kl,x, (4.3)

and �kl are the phases of the new fields φkl .
Since the matrix Û is diagonal and unitary, we still have

ρkl = |ψkl|2 = |φkl|2, (4.4)

whilst the phases �kl are related to φkl through the relation

�kl = i

2
ln

(
φ∗

kl

φkl

)
. (4.5)

Without lost of generality, the matrix Û can be written as

Û[ρ,S] = diag [exp(iσ[ρ,S])], (4.6)

where σ ≡ (. . . , σkl, . . .) is a p-dimensional vector, containing the generators σkl[ρ,S] of
the transformation (4.1), which are real functionals. They relate, through equation (4.1), the
phase Σ of the new field � with the phase S of the old field �, according to the relation

Σ = S + σ[ρ,S]. (4.7)
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When equation (4.7) is invertible, we can express the phases Skl as functionals of the fields ρ
and Σ.

Let us write the generators σkl[ρ,S] as

σkl[ρ,S] = 1

2akl

∫
1

ρkl

(Jkl[ρ,S] + Rkl[ρ,S]) dx, (4.8)

where Rkl[ρ,S] are arbitrary real functionals related to Gk[ρ,S], introduced in
equation (3.12), through the relations

pk∑
l=1

Rkl[ρ,S] = Gk[ρ,S]. (4.9)

Actually, accounting for equations (4.8), it follows that equation (4.1) defines a wide class
of transformations, one for every choice of the set of functionals Rkl . Each of these
nonlinear gauge transformations changes the initial system (2.10), with the nonlinearity
Ŵ [ρ,S] + iŴ[ρ,S], in another one with a purely Hermitian matrix Ŵ ′[ρ,S].

In fact, by performing the transformation (4.1), equation (2.10) becomes

i�t = −Â�xx + (Ŵ0[ρ,Σ] + iŴ0[ρ,Σ])� + V̂ (x)�, (4.10)

with

Ŵ0 = diag [wkl + akl(σkl,x)
2 − 2akl�kl,xσkl,x − σkl,t ], (4.11)

and

Ŵ0 = diag

(
Fkl

ρkl

)
, (4.12)

where the functionals Fkl , given by

Fkl = Ikl − Rkl,x, (4.13)

with Ikl introduced in equation (3.10), fulfil the relations
pk∑
l=1

Fkl = 0, (4.14)

as can be verified by employing equations (3.9), (3.12) and (4.9).
It is easy to see that, as a consequence of equations (4.14), equation (4.10) admits the

following set of continuity equations,

ρk,t + J̃ k,x = 0, (4.15)

where the currents J̃ k , given in equations (4.2) and (4.3), have the standard form of the linear
quantum mechanics.

This last result implies that the matrix Ŵ0[ρ,Σ]+iŴ0[ρ,Σ] can be rearranged in a purely
Hermitian matrix. In fact, equation (4.10) can be rewritten in

i�t = −Â�xx + Ŵ ′[ρ,Σ]� + V̂ (x)�, (4.16)

where the matrix Ŵ ′[ρ,Σ] assumes the following block form,

Ŵ ′[ρ,Σ] = diag (Ŵ ′
k[ρ,Σ]), (4.17)

being the pk × pk matrices Ŵ ′
k[ρ,Σ] = D̂k[ρ,Σ] + Ĉk[ρ,Σ], composed by a diagonal part

D̂k = diag [wkl + akl(σkl,x)
2 − 2akl�kl,xσkl,x − σkl,t ], (4.18)

with purely real entries, and an off-diagonal part

(Ĉk)lm = i
Fkl − Fkm

2pk
√

ρklρkm

ei(Skl−Skm), (4.19)

which result to be Hermitian matrices: Ĉk = Ĉ
†
k . This is our main result.
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In the case p = q the functionals Fk1 vanish and the matrix Ŵ ′ is reduced to a diagonal
form so that equation (4.16) contains now only a purely real nonlinearity given by

Ŵ ′ = diag [wk + ak(σk,x)
2 − 2ak�k,xσk,x − σk,t ], (4.20)

which is in accordance with the results presented in [28].
We observe that because the Lagrangian (2.1) is U(1) invariant, the arbitrary integration

constant, deriving from the definition (4.8), does not produce any effect and can be posed equal
to zero. Moreover, the last term σkl,t in equation (4.18) can be solved using equations (2.13),
(2.14), reducing the nonlinearity in equation (4.16) to a quantity containing only space
derivatives.

It is worth observing that equations (4.9) contain a trivial solution given by Rkl,x = Ikl , as
it follows by comparing equations (4.9) with equations (3.12). This particular solution permits
us to define a set of generators σkl which eliminate completely the quantities Jkl,x + Ikl from
the currents (3.15) and transform the system of CNSEs (2.10) into another one containing
nonlocal nonlinearities. Such a situation, although interesting, is outwith the purpose of the
present work.

In conclusion, let us describe briefly the generalization of the method to the case of
noncanonical systems.

Firstly, we observe that for a noncanonical system the two matrices Ŵ and Ŵ are not
derivable from a potential U [ρ,S]. In particular, the matrix Ŵ can assume any arbitrary
expression.

Differently, the form of the matrix Ŵ is constrained by the existence of the set of the
continuity equations. Without loss of generality we can pose

2ρklWkl[ρ,S] = −(Jkl,x[ρ,S] + Ikl[ρ,S]), (4.21)

where now the functionals Jkl and Ikl are no longer related to the nonlinear potential U [ρ,S]
through equations (3.8) and (3.10). The continuity equations (1.4) require that the functionals
Ikl still fulfil the constraints (3.12) for an arbitrary set of functionals Gk[ρ,S]. The total
currents Jk are given in equation (3.14) but now the functionals Jkl and Gkl are related to the
matrix Ŵ only through equation (4.21).

At this point, by following the same steps described for the canonical case, it is easy to
verify that the transformation (4.1) with generators (4.8) eliminates the anti-Hermitian matrix
Ŵ of the nonlinearity, and transforms the system of CNSEs in the form given in equation (4.16)
with only a Hermitian matrix Ŵ ′ which is given again through equations (4.17)–(4.19).

5. Applications

In order to show the relevance of the method described in this paper, let us consider the
following Hermitian and anti-Hermitian nonlinearities given by

Ŵ [ρ,S] = diag

[
p∑

i=1

ρi(bijSj,x + cijSi,x) + fj (ρ)

]
, (5.1)

Ŵ[ρ] = diag

[
p∑

i=1

(
dij

ρi

ρj

ρj,x + eijρi,x

)]
, (5.2)

where bij , cij , dij and eij are real constants and fj (ρ) are arbitrary real functionals depending
only on the vector field ρ.
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For the sake of simplicity, in this example we recover the more easy notation ψkl → ψj

with j = 1, . . . , p and deal with the only two particular cases (a) and (b) discussed in the
introduction.

The system of CNSEs (1.1), with the two nonlinearities (5.1) and (5.2), is given by

iψj,t = −ajψj,xx + fj (ρ)ψj + vj (x)ψj

+ i
p∑

i=1

(
αij

ρi

ρj

ψjψ
∗
j,xψj + βijρiψj,x + γijψiψ

∗
i,xψj + εijψ

∗
i ψi,xψj

)
, (5.3)

with αij = dij +bij /2, βij = dij −bij /2, γij = eij +cij /2 and εij = eij −cij /2. Equation (5.3),
with vj (x) = 0, includes some cases already known in the literature. For instance: the vector
generalization of the Kaup–Newell equation [32] (aj = 1, cij = 0,−bij = 2dij = eij = β

and fj (ρ) = 0); the coupled Chen–Lie–Liu equation (type I) [33] (aj = 1, cij = eij =
0,−bij = 2dij = β, fj (ρ) = 0); the coupled Chen–Lie–Liu equation (type II) [33]
(aj = 1, bij = dij = 0, cij = −2eij = β, fj (ρ) = 0); the hybrid CNSE [34, 35]
(aj = 1, cij = 0,−bij = 2dij = eij = β and fj (ρ) = β

∑
k ρk); the vectorial Eckhaus

equation [36] (αij = 0, fj (ρ) = ∑
ik λjikρiρk). Moreover, for q = p = 2, with bij +2dij = 0

and f1(ρ) = fρ1 + gρ2, f2(ρ) = gρ1 + fρ2, equation (5.3) has been studied in [37].
The canonical sub-family of equation (5.3) is given by posing bij = cji = −2dij = −2eij ,

with the nonlinear potential

U [ρ,S] = −
p∑

i,j=1

bijρiρjSi,x + F(ρ), (5.4)

where the conditions δF (ρ)/δρj = fj (ρ) are assumed.
It is easy to observe that:

(a) when dij = eij , for i �= j , equation (5.3) conserves the densities ρj = |ψj |2, and the
currents take the form

Jj = 2ajρjSj,x − (djj + ejj )ρ
2
j − 2

p∑
i=1,i �=j

dijρiρj , (5.5)

with Jj (ρ) = −(djj + ejj )ρ
2
j − 2

∑
i �=j dijρiρj and Ij (ρ) = 0.

(b) when dij + eji = dji + eij , equation (5.3) conserves the total density ρ = ∑
j ρj , and the

total current is given by

J =
p∑

j=1

[
2ajρjSj,x −

p∑
i=1

(dij + eji)ρiρj

]
, (5.6)

with Jj (ρ) = −(djj + ejj )ρ
2
j and Ij (ρ) = −2

∑
i �=j

(
dijρiρj,x + eijρjρi,x

)
.

If we choose the functionals Rj (ρ) = 0 in the case (a) and

Rj (ρ) = −
p∑

i=1,i �=j

λijρiρj , (5.7)

in the case (b), where λij = dij + eij , the generators (4.8) can be written in the unified form

σj (ρ) = − 1

2aj

p∑
i=1

λij

∫
ρi dx. (5.8)

By performing transformation (4.1) in equation (5.3) we obtain a new system of CNSEs for
the field � containing the nonlinearity

Ŵ ′[ρ,S] = D̂[ρ,S] + Ĉ[ρ,S], (5.9)
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where the diagonal matrix D̂ has entries

D̂[ρ,S] = diag

[
p∑

i=1

ρi(µij�j,x + νij�i,x) +
p∑

i,k=1

ωjikρiρk + fj (ρ)

]
, (5.10)

with

µij = bij + λij ,

νij = cij − ai

aj

λij ,

ωjik = 1

4aj

(
λijλkj + 2bijλkj + 2

aj

ai

cijλki

)
,

(5.11)

whereas the off-diagonal matrix Ĉ has entries

(Ĉ[ρ,S])ij = i
Fi (ρ) − Fj (ρ)

2p
√

ρiρj

ei(�i−�j ), (5.12)

with

Fj (ρ) =
p∑

i=1

(dij − eij )(ρiρj,x − ρi,xρj ). (5.13)

We observe that the functionals (5.13) vanish in the case (a) and the nonlinearity Ŵ ′ reduces
to a purely real one.

Depending on the initial parameters bij , cij , dij , eij and on the functionals fj (ρ), the new
CNSEs contain some interesting cases.

For instance, by choosing bij = −2dij = −2eij and aj cij = 2aidij we obtain a system
of CNSEs with a purely real nonlinearity, which depends only on the fields ρi

iφj,t = −ajφj,xx +

(
p∑

i,k=1

ωjikρjρk + fj (ρ)

)
ψj + vj (x)φj . (5.14)

In particular, the vectorial Eckhaus equation, with λjik = ∑
ik bij (bkj − 2bki)/4aj , is reduced

to a system of decoupled linear Schrödinger equations

iφj,t = −ajφj,xx . (5.15)

Other interesting cases can be found by inspection [28].

6. Final comments

In this paper we have generalized a method, previously presented in the literature, for the
U(1)-invariant nonlinear Schrödinger equations with a complex nonlinearity to the case of
U(1)-invariant system of coupled nonlinear Schrödinger equations containing a very general
nonlinearity �̂[ρ,S]. Without loss of generality, such nonlinear system can be arranged in a
diagonal form where the nonlinearity Ŵ [ρ,S] + iŴ[ρ,S] is given by two diagonal matrices
with real entries. For such a system, we have introduced a nonlinear and unitary transformation
changing the initial nonlinearity in another purely Hermitian. Consequently, the nonlinear
currents (3.14) associated with the conserved densities ρk = ∑

l ρkl are transformed into the
standard bilinear currents (1.7). Moreover, it has been shown that when the system conserves
separately all the quantities Nk1, the Hermitian matrix Ŵ ′ contains only purely real entries.
Extension of the method to noncanonical systems has been discussed.

In particular, we have shown that, starting from a given set of U(1)-invariant coupled
nonlinear Schrödinger equations, there are many different possibilities of defining the
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generators of the transformation, as given in equations (4.8) and (4.9). For any of these
choices we obtain a new set of coupled nonlinear evolution equations with a different, but
Hermitian, nonlinearity, through equations (4.18) and (4.19). The transformed systems, in
spite of their different nonlinearities, are all physically equivalent because, due to the unitarity
of the gauge transformation, the conserved density fields ρk are equal in space at all time.

Generalization to high spatial dimensions is also immediate. In this case, according to
equations (4.8), the generators of the transformation σkl[ρ,S] can be introduced through the
relations

∇σkl[ρ,S] = J kl[ρ,S] + Rkl[ρ,S]

2aklρkl

, (6.1)

where

J kl = 2aklρkl∇Skl, (6.2)

and Rkl denotes the vectorial generalization of the functionals Rkl introduced through
equations (3.12) and (4.9). We remark that the following conditions of consistence must
be fulfilled [22]

∇ ×
[

1

ρkl

(J kl[ρ,S] + Rkl[ρ,S])

]
= 0. (6.3)

Equations (6.3) select the potentials U [ρ,S] and, through equations (2.11), (2.12), the
nonlinear system, where the transformation can be performed. For noncanonical systems,
equations (6.3) constraint only the form of the anti-Hermitian matrix Ŵ , as can be seen
through equation (4.21).

Let us observe that the transformation (4.1) typically breaks the canonical structure of
the theory. As a consequence, the new system of CNSEs does not admit, in general, a
Lagrangian formulation. The opposite is also true. When the transformation is applied to
a noncanonical system, the new system of CNSEs may acquire a canonical structure. A
sufficient condition to obtain a canonical system, after transformation, is given by observing
that, if the transformed nonlinear matrix Ŵ ′ is a functional depending only on the field ρ,
from equation (2.11) it follows that also the nonlinear potential U depends only on ρ and
consequently the anti-Hermitian matrix Ŵ ′, given by equation (2.12), vanishes.

In conclusion, we have presented some examples to show the applicability of the method.
Although some of these are known before in the literature, it has been shown that the nonlinear
transformation introduced in this paper allows us to treat in a unifying scheme all these CNSEs,
obtaining, in a systematic way, the transformations introduced by the different authors.
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